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Abstract. In clinical practice, a desirable medical image segmentation
model should be able to learn from sequential training data from multiple
sites, as collecting these data together could be difficult due to the storage
cost and privacy restriction. However, existing methods often suffer from
catastrophic forgetting problem for previous sites when learning from
images from a new site. In this paper, we propose a novel comprehensive
importance-based selective regularization method for continual segmen-
tation, aiming to mitigate model forgetting by maintaining both shape
and reliable semantic knowledge for previous sites. Specifically, we define
a comprehensive importance weight for each model parameter, which
consists of shape-aware importance and uncertainty-guided semantics-
aware importance, by measuring how a segmentation’s shape and reliable
semantic information is sensitive to the parameter. When training model
on a new site, we adopt a selective regularization scheme that penalizes
changes of parameters with high comprehensive importance, avoiding the
shape knowledge and reliable semantics related to previous sites being
forgotten. We evaluate our method on prostate MRI data sequentially
acquired from six institutes. Results show that our method outperforms
many continual learning methods for relieving model forgetting issue.
Code is available at https://github.com/jingyzhang/CISR.

Keywords: Continual learning · Multi-site segmentation ·
Comprehensive importance · Selective regularization

1 Introduction

Convolutional neural networks have achieved remarkable performance in medi-
cal image segmentation [9]. These architectures require a large number of train-
ing images, which are commonly acquired from multiple sites (or hospitals), to
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improve model generalization capability. However, it is impractical to aggregate
together such large multi-site datasets due to the expensive storage cost and
the privacy restriction across institutes. An alternative way is to train a model
with a sequential stream of multi-site data rather than a consolidated set, where
data of different sites arrives in sequence without storing and access to old data
of previous sites. In this setting, a naive continuous model fine-tuning scheme
concerning only the new incoming site would cause considerable performance
degradation on previously learned sites, called catastrophic forgetting [15], due
to the data distribution discrepancy across multiple sites with different acqui-
sition protocols. It is desired yet challenging to enable a model to continually
segment on a new site without sacrificing the performance on previous sites.

Much effort has been directed at continual learning for mitigating model
forgetting[18]. For example, experience replay methods are proposed to
strengthen memory of old knowledge by explicitly storing old raw data [13,19] or
implicitly training generative models [21], which yet requires additional replay
storage and selection criterion. Besides, dynamically expandable networks [23]
augment architecture with new modules (e.g., gating autoencoders [2] and batch
normalization layers [5]) to accommodate new knowledge, contributing to zero
forgetting yet causing quadratic parameter increase and requiring task label for
each sample at test time. In a task-agnostic manner with fixed network archi-
tecture, selective regularization methods [1,7,25] explore model parameters that
are important for preserving old knowledge, and then minimize their alterations
when learning new knowledge. Despite of their success in image-level classi-
fication, a naive translation of these methods to continual segmentation would
yield sub-optimal performance [4] for two-fold reasons. First, the selected impor-
tant parameters are not aware of shape information that is abundant in struc-
tural dense segmentation predictions, aggravating model forgetting especially
for shape knowledge. Second, the segmentation reliability is ignored, which mis-
guides the parameter selection to fit and even remember semantic noise in the
segmentation results.

In this paper, we propose a novel comprehensive importance-based selec-
tive regularization (CISR) method for continual multi-site segmentation, which
mitigates model forgetting by simultaneously preserving shape information and
reliable semantics for previously learned sites. To prioritize parameter usage
in the model related to shape and reliable semantic information, we propose
a comprehensive importance (CI) weight for each parameter that consists of
shape-aware importance (SpAI) and uncertainty-guided semantics-aware impor-
tance (USmAI). Concretely, SpAI is measured by the parameter sensitivity to
shape-relevant predictions (i.e., a level set representation and a segmentation
embedding), accounting for the complementary shape information with local
boundary and global topology. USmAI is estimated for each parameter based on
the sensitivity to only confident segmentation predictions with reliable semantic
information instead of uncertain ones with potential noise, by exploiting uncer-
tainty estimation with Monte Carlo Dropout. Finally, when training model on
a new site, we utilize a selective regularization scheme that penalizes changes of
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Fig. 1. Overview of our framework. For each model parameter, we define a compre-
hensive importance (CI) consisting of: (1) shape-aware importance (SpAI) consider-
ing complementary shape information by a level set representation and a segmenta-
tion embedding (Sect. 2.1); and (2) uncertainty-guided semantics-aware importance
(USmAI) considering reliable semantic information without uncertain segmentation
results (Sect. 2.2). When fine-tuning the model on a new incoming site in the sequential
data stream, a selective regularization loss Lsr penalizes changes of important parame-
ters with high accumulated CI, mitigating model forgetting for previously learned sites
(Sect. 2.3).

important parameters with high CI, preventing both shape and semantic knowl-
edge for previous sites being overwritten and forgotten. We have evaluated our
method with the application of prostate MRI segmentation, using a sequential
stream of public datasets acquired from six institutes with different acquisition
protocols. The results validate that our method effectively alleviates model for-
getting issue and outperforms many state-of-the-art continual learning methods.

2 Methods

In our problem setting, we are given a sequential stream of images from K sites,
which are sequentially used to train a segmentation model. In round k ∈ [1,K] of
this continual learning procedure, we can only obtain images and ground truths
{(xn, yn)}N

n=1 from a new incoming site ζk without access to old data from pre-
vious sites {ζi}k−1

i=1 . Figure 1 illustrates our proposed comprehensive importance-
based selective regularization (CISR) method, with an objective to consecutively
learn on a new site without sacrificing the performance on previous sites.

2.1 Shape-Aware Importance (SpAI)

Different from the classification task considering sample-wise isolated accuracy,
the segmentation task requires structural dense predictions with abundant shape
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information, which would complicate the model forgetting problem. Therefore,
we first augment the vanilla segmentation model with new shape-relevant out-
puts to explicitly exploit the shape characteristics of segmentation object. Then
we measure how these shape-relevant outputs are sensitive to each model param-
eter, reflecting the importance of this parameter for preserving the explicit shape
information, i.e., the shape-aware importance (SpAI).

Complementary Shape-Relevant Outputs. Typically, shape information
could be divided into two complementary aspects [16], i.e., local boundary and
global topology. To exploit both shape aspects, we augment the network back-
bone with an additional regression head and also attach an autoencoder to the
vanilla segmentation head. Specifically, the regression head learns from the level
set representation of ground truth with signed distance transform [14], provid-
ing rich boundary delineation. The autoencoder on the top of segmentation head
has encoder-decoder components, learning an intermediate representation from
which the input segmentation can be reconstructed. Internally, encoder compo-
nent is designed to be undercomplete [17] with a last fully-connected layer. It,
pretrained by ground truth1, can compress segmentation result into a compact
embedding with highly reduced dimension, thus encoding global topology in it.

Formally, based on the mean squared error Lmse, we define a joint shape loss
Lsp for shape-relevant outputs with trade-off parameter αr and αe:

Lsp = αrLr + αeLe, with Lr = Lmse (rn, Tr(yn)) , Le = Lmse (Te(sn), Te(yn)) ,
(1)

where Tr(yn) denotes the level set representation of ground truth yn, as defined
by a signed distance transform [14]. Loss Lr encourages the regression output rn

to be a predicted level set representation of the segmentation target in image xn,
which delineates the detailed object boundary. Besides, Te(sn) and Te(yn) are the
segmentation embedding and ground truth embedding, respectively, by passing
the segmentation result sn and ground truth yn through the encoder component
of autoencoder. Loss Le enables Te(sn) to exploit the global topology of segmen-
tation target in xn. Therefore, after convergence, rn and Te(sn) are regarded as
shape-relevant outputs, characterizing complementary shape information.

Measurement of SpAI. To mitigate model forgetting for shape information,
shape-relevant outputs are the targets that need to be preserved when learning
on a new site. Therefore, motivated by [1], we measure the sensitivity of shape-
relevant outputs rn and Te(sn) with respect to a change of each model parameter:

Ωsp
ij =

1
N

N∑

n=1

βr∂ ‖rn‖22 + βe∂ ‖Te(sn)‖22
∂θij

, (2)

1 Before each round of continual learning, the encoder component is pretrained and
consecutively fine-tuned with the coupled decoder component, by minimizing a
reconstruction loss with ground truth mask inputs. It should be frozen [24] in
the later to avoid being corrupted by incomplete shape predictions due to model
forgetting.
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where ∂‖rn‖2
2

∂θij
and ∂‖Te(sn)‖2

2
∂θij

denote the gradient of squared L2 norm of rn and
Te(sn) with respect to parameter θij . βr and βe are trade-off parameters. Sen-
sitivity Ωsp

ij is obtained by averaging gradients over all N images. Intuitively,
it reflects that how much a small perturbation to θij would change the shape-
relevant outputs rn and Te(sn). Therefore, sensitivity Ωsp

ij can also be regarded as
SpAI, measuring parameter importance for preserving shape knowledge. Param-
eters with high SpAI should be unchanged to avoid forgetting shape knowl-
edge when training on subsequent sites, while parameters with small SpAI can
be updated without constraints since they slightly affect the shape-relevant
outputs.

2.2 Uncertainty-Guided Semantics-Aware Importance (USmAI)

Besides shape knowledge, segmentation semantics is also crucial since it accounts
for the pixel-wise predictions with inherent image property. However, considering
the low contrast and inhomogeneous appearance of medical images [22], segmen-
tation results may be noisy and unreliable, misguiding the selective regulariza-
tion with important parameters for semantic noise that is commonly around
segmentation boundary. To solve this problem, we estimate uncertainty for each
segmentation prediction, and then propose a uncertainty-guided scheme to mea-
sure the parameter importance regarding only confident segmentation results
with reliable semantic information, i.e., the uncertainty-guided semantics-aware
importance (USmAI).

Uncertainty Estimation. Given image xn and ground truth yn, the network
learns to predict semantic segmentation via segmentation head with loss:

Lseg = Lce(sn, yn) + Ldice(sn, yn), (3)

where sn is the segmentation result of xn. Lce and Ldice denote the cross-entropy
loss and dice loss, respectively. At the same time, we estimate uncertainty for sn

by Monte Carlo Dropout (MCDO) [6]. Specifically, given the same input xn, we
perform D times forward passes through the network backbone and segmentation
head with the activation of dropout operations, leading to D-fold segmentation
predictions {s̃d

n}D
d=1. The average of them is denoted by μn, and then used to

calculate the entropy as the estimated uncertainty un:

μn =
1
D

∑D

d=1
s̃d

n, and un = −μnlogμn. (4)

Measurement of USmAI. Under the guidance of uncertainty un, we select
only confident predictions from sn and then measure their sensitivity concerning
a change of each model parameter, which is defined as USmAI for this parameter:

Ωsm
ij =

1
N

N∑

n=1

∂ ‖I (un < T ) sn‖22
∂θij

, (5)



394 J. Zhang et al.

where I(·) denotes the indicator function. T is a threshold for un to select confi-
dent targets (low uncertainty) in sn with reliable semantics. Ωsm

ij is measured by
averaging the gradients of these confident targets concerning parameter θij . A
higher Ωsm

ij indicates that even a small perturbation for θij would largely change
reliable segmentation results, implying a higher importance of θij for preserv-
ing meaningful semantic information. Therefore, the changes of parameters with
high USmAI should be penalized to overcome forgetting for reliable semantics.

2.3 Comprehensive Importance-Based Selective Regularization

SpAI and USmAI are combined into a comprehensive importance (CI), priori-
tizing the parameter usage for keeping shape knowledge and reliable semantics:

Ωc
ij = Ωsp

ij + Ωsm
ij . (6)

When training model on a new site, in addition to the inter-site supervised
loss Lsp +Lseg for this site by Eq. (1) and Eq. (3), we design a selective regular-
ization loss Lsr that penalizes changes of parameters with high accumulated CI
to avoid forgetting shape knowledge and reliable semantics for previous sites:

L = Lsp + Lseg + λLsr, with Lsr =
∑

i,j
Ωc∗

ij (θij − θ∗
ij)

2, (7)

where λ is a trade-off parameter. Notably, Ωc
ij is computed in each learning round

for a specific incoming site, and accumulated over all previously learned sites by
moving average, as denoted by Ωc∗

ij . It is used as a weight for the change between
current parameter θij and old parameter θ∗

ij (as determined by optimizing Eq. (7)
for the previous site in the sequence), formulating the selective regularization loss
Lsr to avoid changing parameters with high Ωc∗

ij that are important for previous
sites. In this way, both shape and reliable semantic knowledge can be effectively
preserved, and thus catastrophic forgetting problem would be mitigated.

3 Experiments

Dataset. We employed a well-established multi-site prostate T2-weighted MRI
dataset [12], including 30 cases with in/through plane resolution 0.6–0.625/3.6–
4 mm from RUNMC [3] (Site A), 30 cases with resolution 0.4/3mm from BMC
[3] (Site B), 19 cases with resolution 0.67–0.79/1.25 mm from HCRUDB [8] (Site
C), 13 cases with resolution 0.325–0.625/3-3.6 mm from UCL [10] (Site D), 12
cases with resolution 0.25/2.2–3 mm from BIDMC [10] (Site E), and 12 cases
with resolution 0.625/3.6 mm from HK [10] (Site F). We organized this multi-
site dataset in a sequential stream ordered by Site A→B→C→D→E→F. For
pre-processing, we resized all images to size 384 × 384 in the axial plane and
normalized them to zero mean and unit variance. For each site, we used images
from 60%, 15% and 25% of cases for training, validation and testing.
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Implementation. We adopted 2D-UNet [20] as network backbone due to the
large variance on through-plane resolution among different sites [11]. Weight λ
was empirically set as a large value 105 [18]. Parameter αr, αe, βr and βe were set
as 0.001, 0.1, 0.1, 0.001 for suitable trade-off. The autoencoder was designed with
mirrored encoder-decoder components, where the encoder component was used
as an embedding network containing three cascaded blocks with Conv 3×3 (16,
32, 64 kernels) using stride 2 and 1 in each, followed by a flatten operation and
a fully-connected layer with 64 hidden units. In each learning round with data
from a new site, we optimized the objective function Eq. (7) by AdamOptimizer
with learning rate 5×10−4, batch size 5 and epoch number 200.

Evaluation Metrics. We evaluate the segmentation performance by dice simi-
larity coefficient (DSC) and average symmetric surface distance (ASD). After the
model finishes continual learning on the last site ζK , we compute DSC and ASD
on all sites {ζi}K

i=1 (including the current and previous sites), leading to two sets
of results {DK,i}K

i=1 and {AK,i}K
i=1, respectively. Entry DK,i and AK,i denote the

test DSC and ASD on site ζi after learning on the last site ζK . Based on them,
we define several specialized metrics for continual learning, i.e., the average of
DSC and ASD (DSCave=

∑K
i=1DK,i/K, ASDave=

∑K
i=1AK,i/K) for the generic

evaluation; the backward transfer [13] of DSC and ASD (DSCbwt=
∑K−1

i=1 (DK,i−
Di,i)/(K − 1), ASDbwt=

∑K−1
i=1 (AK,i − Ai,i)/(K − 1)) that particularly reflect

model forgetting for previous sites. Notably, an advanced continual learning
method should have a high DSCave and DSCbwt with a low ASDave and ASDbwt.

Comparison with State-of-the-art Continual Learning Methods. We
compare our CISR with several state-of-the-art continual learning methods,
including elastic weight consolidation (EWC) method [7] that preserves old
knowledge based on the Fisher information, synaptic intelligence (SI) method
[25] that updates network memory in an online manner, and memory-aware
synapses (MAS) method [1] considering plain semantics without the uncertainty-
guided scheme. We also implement a naive continuous fine-tuning (FT) scheme
as baseline method with only the inter-site supervised loss considered in Eq. (7).

Table 1 lists the quantitative evaluation after continual learning finished on
the last site F. FT suffers from the severe model forgetting problem (the worst
bwt measures of DSCbwt and ASDbwt) and the poor segmentation results (the
worst ave measures of DSCave and ASDave). Classical methods of EWC, SI and
MAS improves the continual learning performance over FT, while their advan-
tages are still relatively limited. Importantly, our proposed CISR outperforms all
these methods, e.g., an advantage over MAS by 3.13% DSCave, 5.23% DSCbwt,
0.22 mm ASDave, 0.37 mm ASDbwt, indicating its superiority for continual learn-
ing without sacrificing performance on previous sites.

We also report in Fig. 2 how the test performance on site A changes during the
entire continual learning. Once finishing learning on new sites, FT immediately
forgets previously learned knowledge for site A, leading to evident performance
decrease on it. EWC, SI and MAS mitigate this problem to some extent, yet still
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Table 1. Evaluation after the model finishes continual learning on the last site F.

Method DSCave(%)↑ DSCbwt(%)↑ ASDave(mm)↓ ASDbwt(mm)↓
FT (baseline) 40.78 ± 28.26 –50.54 ± 21.58 13.66 ± 8.67 13.75 ± 6.52

EWC [7] 68.83 ± 17.51 –23.90 ± 14.09 4.43 ± 3.34 3.94±3.14

SI [25] 75.97 ± 14.11 –15.27 ± 10.05 3.87 ± 2.40 2.97 ± 2.96

MAS [1] 76.81 ± 11.18 –13.23 ± 8.24 3.64 ± 3.10 2.28 ± 3.32

USmAI 78.11 ± 10.60 –11.42 ± 7.92 3.49 ± 2.80 2.06 ± 3.02

SpAIr 77.85 ± 10.96 –12.10 ± 8.07 3.51 ± 2.75 2.16 ± 2.76

SpAIe 77.53 ± 11.04 –12.74 ± 8.34 3.57 ± 2.85 2.36 ± 2.69

SpAI 79.31 ± 8.86 –9.89 ± 6.19 3.44 ± 2.89 2.11 ± 2.89

CISR (Ours) 79.94 ± 7.71 –8.00 ± 6.15 3.42 ± 2.83 1.91 ± 2.86

Fig. 2. Changes of test performance on Site A by different methods during continual
learning, where the model is sequentially trained on sites A→B→C→D→E→F.

challenged by model forgetting especially after training on site C, since most
images from this site contain prostate cancer [8] with visible appearance differ-
ence for previous site A. Our CISR maintains consistently the least performance
decrease on site A, showing its best capability for reducing model forgetting.

Furthermore, we visualize in Fig. 3 the segmentation results on site A, D
and F before and after the model finishes learning on site F. By training on
site F that is newly incoming in sequence, all methods achieve highly improved
performance on this site (the third row), indicating their sufficient adaptation
capability for new site. However, FT leads to severe performance degradation
on previously learned site A and D. Among all methods, our CISR achieves the
most accurate results on site A and D after training on site F, and maintains
the highest overlap ratio with previously obtained results (the first two rows).
Besides, high uncertainty focuses on object ambiguous boundaries with semantic
noise, explaining the feasibility of our uncertainty guidance for filtering out them.

Ablation Study. We validate the role of SpAI (including SpAIr using only rn

for boundary delineation and SpAIe using only Te(sn) for topology awareness)
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Fig. 3. Visualization of segmentation examples on site A, D and F before (i.e., after
training on site A, D and E, respectively) and after training on the newly incoming
site F. Also, the uncertainty maps of our CISR is visualized in the last column.

and USmAI for reliable semantics in our method. Table 1 shows that USmAI out-
performs MAS owing to our uncertainty-guided scheme for filtering out semantic
noise. Preserving shape knowledge by SpAIr and SpAIe has an advantage over
MAS, and a combination of them in SpAI even improves performance over each
single component. Beside, incorporating SpAI and USmAI in our CISR further
facilitates more advantages owing to the jointly preserved shape and semantics.

4 Conclusion

This paper proposes a comprehensive importance-based selective regularization
method for continual multi-site segmentation. We propose to reduce model for-
getting by strengthening network memory for both shape knowledge (with com-
plementary boundary and topology cues) and reliable semantics (with only con-
fident predictions). Experiments show the effectiveness on prostate segmentation
with sequential multi-site data. In the further, it would be of interest to study
the application for other continual segmentation tasks with longer site sequences.
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